The 911 kit was designed for urgent situations when either a screw or an implant fractures. The 911 kit will allow you to remove the fractured portion of the implant that remains in the bone and facilitate removal of fractured screws. The screw solver, the Trox Driver and the screw guide allow you to match the screw diameter and make fractured screw removal a much simpler and safer procedure. The 911 kit also allow screws to be removed that have stripped hexes by utilizing the Abutment Solver or the Hex Remover.
911 Kit

Each $1,560.00

Ref. C

737-2017
Fixture Remover

- Fixture Remover Screw: Single use only
- Do not use in case of a gap in Fixture Remover

Remove the prosthesis from the fixture that is to be removed, and the surrounding bone.

Select a Fixture Remover Screw of the same size as the fixture internal screw. Use the Trox Driver to turn the screw clockwise (40Ncm-70Ncm) to place in the fixture. (Use of torque less than 40Ncm for M1.6, and 60Ncm for other products may lead to loosening.)

Select a Fixture Remover that fits the fixture diameter. Turn the Fixture Remover Screw counterclockwise until it touches the fixture. (For a torque of greater than 300Ncm, it is recommended to use a Trephine bur.)

Fixture and Fixture Remover are tightly connected as rising force and descending force are combined. (Suction is needed as you may have debris on removal of a fixture.)

Using Torque Wrench, turn counter clockwise and pull out fixture and Fixture Remover. (No more than maximum torque per fixture.)

Removed fixture can be pulled out by turning the Fixture Remover and fixture clockwise while holding onto vice plier.
Abutment Remover

- Can use for abutments that use M1.8 & 2.0 screws.
- Cannot use for abutments that use M1.6 & M2.5.

01. Insert the Abutment Remover in the fractured abutment hole.

02. Move the Abutment Remover sideways while pulling up to remove it. (Use of excessive force may traumatize the fixture or the bone.)

03. Use the Ratchet Wrench to turn clockwise in order to join the abutment and the Abutment Remover as one body. (Ratchet Wrench is included in surgical kit)

04. Secure the separated abutment in a vice or vice pliers. Use the Ratchet Wrench to turn clockwise to separate the abutment with the Abutment Remover.

Hex Remover

01. In case Abutment Screw, Cover Screw or Healing Abutment’s hex is fractured:

02. Use the Ratchet Wrench to turn clockwise to join the abutment with the Abutment Remover as one body. (Use a torque of less than 40Ncm. Ratchet Wrench is included in surgical kit.)

03. Place the removed abutment in the vice. Use the Ratchet Wrench to turn clockwise to separate the abutment with the Hex Remover.
Screw Remover

1. Remove the broken Abutment Screw and the abutment.

2. Select the correct Screw Remover Guide that fits the fixture connection to join.

4. Push the Screw Remover downwards while rotating counterclockwise to separate it from the fixture internal screw. (RPM: 30-50, Torque: 30Ncm)

5. Remove the pieces of broken screw from the fixture internal screw using forceps.

When separating the holder from the guide, push in the direction of the arrow to separate.
911 Kit Components

Fixture Remover

Each $130.00

<table>
<thead>
<tr>
<th>Applied Fixture Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø3.0~Ø3.6</td>
<td>15</td>
<td>FSS3035</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>FSL3035</td>
</tr>
<tr>
<td>Ø3.7~Ø4.6</td>
<td>15</td>
<td>FSS3540</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>FSL3540</td>
</tr>
<tr>
<td>Ø4.7~Ø5.6</td>
<td>15</td>
<td>FSS4555</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>FSL4555</td>
</tr>
<tr>
<td>Ø5.7~Ø7.0</td>
<td>15</td>
<td>FSS6080</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>FSL6080</td>
</tr>
</tbody>
</table>

• To remove the fixture. When selecting a Fixture Remover, consider the outer diameter of a Fixture. In case of AnyRidge Fixture that the thread is formed under platform, select a Fixture Remover according to platform size.

Fixture Remover Screw

Each $130.00

<table>
<thead>
<tr>
<th>Applied Fixture Thread</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.4(MiNi)</td>
<td>FSS14</td>
</tr>
<tr>
<td>M1.6(EZ Plus, ExFeel Ø3.3)</td>
<td>FSS16</td>
</tr>
<tr>
<td>M1.8(AnyRidge)</td>
<td>FSS18</td>
</tr>
<tr>
<td>M2.0(AnyOne, Mega Fix, EZ Plus, ExFeel)</td>
<td>FSS20</td>
</tr>
<tr>
<td>M2.5(Rescue)</td>
<td>FSS25</td>
</tr>
</tbody>
</table>

• To connect fixture and Fixture Remover.
• Recommended tightening torque FSS14, FSS16 : 40~50 Ncm FSS18, FSS20, FSS25 : 70~80 Ncm.

Torx Driver

Each $130.00

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>TD05</td>
</tr>
<tr>
<td>15</td>
<td>TD15</td>
</tr>
<tr>
<td>20</td>
<td>TD20</td>
</tr>
</tbody>
</table>

• To connect fixture to Fixture Remover Screw

Torque Wrench

Each $200.00

<table>
<thead>
<tr>
<th>Type</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>300Ncm</td>
<td>TW500</td>
</tr>
<tr>
<td>70Ncm</td>
<td>TW70</td>
</tr>
</tbody>
</table>

• TW500 : To check torque force when removing fixture.
• TW70 : To check torque force when tightening Fixture Remover Screw.
911 Kit Components

Abutment Remover

Each $130.00

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>ASS</td>
</tr>
<tr>
<td>27</td>
<td>ASL</td>
</tr>
</tbody>
</table>

- On fractured abutment.
- Use screw size M1.8 & M2.0.

Screw Remover

Each $130.00

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>SSS</td>
</tr>
<tr>
<td>45</td>
<td>SSL</td>
</tr>
</tbody>
</table>

- To remove fractured screw.
- Use screw size M1.8 & M2.0.

Screw Remover Guide

Each $130.00

<table>
<thead>
<tr>
<th>Applied Fixture Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>10</td>
<td>SSIG10</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>SSIG16</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>SSIG22</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>SSIG22W</td>
</tr>
<tr>
<td>External</td>
<td>Hex 2.4</td>
<td>SSEG24</td>
</tr>
<tr>
<td></td>
<td>Hex 2.7</td>
<td>SSEG27</td>
</tr>
<tr>
<td></td>
<td>Hex 3.3</td>
<td>SSEG33</td>
</tr>
</tbody>
</table>

- To secure the Screw Remover from moving side to side when removing the screw.

Screw Remover Guide Holder

Each $174.00

<table>
<thead>
<tr>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSGH</td>
</tr>
</tbody>
</table>

- Tool to supporting the Screw Remover Guide.

Hex Remover

Each $130.00

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>HSS</td>
</tr>
<tr>
<td>27</td>
<td>HSL</td>
</tr>
</tbody>
</table>

- To remove hex-damaged Abutment Screw, Cover Screw or Healing Abutment.
AutoMax Burs provide a faster and safer procedure. They can be used to either core a site for implant placement or to collect autogenous bone atraumatically. The drills feature a sharp cutting edge and a basket stopper to capture bone into usable particles at no cost and minimal morbidity. One pass with the AutoMax 3.5 can collect as much as 1cc of autogenous bone. More than 1cc of autogenous bone is collected with wider AutoMax burs.

Design Concept

- **Auto-Max**
- **Stopper**
 - Material: Ti-6Al-4V
 - Coating: TiN
 - Designed for easy connection & disconnection
 - Optimally designed so that the bone will not be lost.

- **4mm Stop**
- **Center guide** during drilling
- **Unique sliding design** for smooth lifting of Stopper with appropriate resistance as drilling progresses
- **Wide opening** to permit easy removal of harvested bone
- **Equipped with optimal blade design**, so bone can be harvested with low RPM.

Ref. C
737-1508

Each $520.00
Easy and Fast Insertion

- Sufficient cutting force can be obtained even at low RPM. Autogenous bone can be harvested within 10 seconds!
- Amount of bone harvested may be equivalent to the size of each Auto-Max.
- Enables quick, easy bone harvesting in a single procedure.
- It can be cleaned thoroughly, as the Stopper is easily disconnectable.
- V shaped opening completely prevents bone chips from splattering during drilling.
- May be used in any type of bone with excellent durability.

How to Use

1. Connect an Auto-Max to the handpiece and position the stopper on the Auto-Max.
2. The Auto-Max should meet the bone surface perpendicularly. Press the handpiece to fix the sharp point of the drill on the bone, and start drilling at about 500RPM with copious irrigation.
3. Do not pump during harvest. Pumping may scatter the harvested bone.
4. The Auto-Max will automatically stop advancing into the bone at a depth of 4mm.
5. Disconnect the stopper from Auto-Max and collect particulated autogenous bone in a sterilized tray.

Repeat steps 1~5 until the desired volume of bone is obtained.

6. Bone should be harvested from a new site each time, avoiding overlap with other harvest sites.

Each $140.00

<table>
<thead>
<tr>
<th>Description</th>
<th>Ref. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-Max</td>
<td></td>
</tr>
<tr>
<td>737-1363</td>
<td>Ø2.5~Ø3.5 / Stopper</td>
</tr>
<tr>
<td>737-1366</td>
<td>Ø6.0~Ø7.0 / Stopper</td>
</tr>
<tr>
<td>737-1364</td>
<td>Ø4.0~Ø5.0 / Stopper</td>
</tr>
<tr>
<td>737-1365</td>
<td>Ø5.0~Ø6.0 / Stopper</td>
</tr>
</tbody>
</table>

Connection status when starting.
Clinical Case 1

Fig 1. Severe periodontitis on #34. #35 was extracted 2 months before.

Fig 2. #34 was extracted and the socket was degranulated thoroughly.

Fig 3. Auto-Max was prepared for bone harvesting.

Fig 4. Autogenous bone was harvested from the ramus.

Fig 5. The defect was filled with shaved autogenous bone following implant placement.

Fig 6. Intraoral radiograph immediately after surgery.

Clinical Case 2

Fig 1. The prosthetics on the mandibular right molar was broken caused by secondary caries.

Fig 2. Three implants were placed after extraction and degranulation of residual roots. All the implants showed bone defects.

Fig 3. Auto-Max harvested autogenous bone from edentulous area.

Fig 4. The autogenous bone was mixed with Mega-Oss bovine to increase volume of graft.

Fig 5. The defects were filled with the graft mixture and covered with a collagen membrane.

Fig 6. The panoramic radiograph taken immediately after surgery.

Fig 7. Intraoral radiographs taken after delivery of customized abutments.
Surgical Method Classified by Sinus Condition

Class I: High and Wide
H > 6mm, W > 12mm
For use with Short and Wide Implant (5 ~ 7mm)

Class II: Low and Wide
H < 6mm, W > 12mm
For use with MICA Kit

Class III: High and Narrow
H > 6mm, W < 12mm
For use with Mica Kit

Class IV: Low and Narrow
H < 6mm, W < 12mm
For use with MILA Kit
Crestal Approach Mica Kit
Each $2,200.00

Lift safely with confidence!
The Mica is designed for a crestal approach to sinus elevation. This kit was the first of its kind, and features a series of pointed trephines, adjustable trephines, and sinus express burs that will allow you to get to the membrane quickly and atraumatically. It provides a crestal approach where the membrane is exposed so you can easily determine the thickness of the Schneiderian membrane. The elevation tools includes 4 sizes of mushroom elevators, a Cobra elevator, and an elevator and packing tool to place and pack bone.
Express Bur

Combines function of Diamond Drill and Reamer Drill

1. Easy to Clean
The smooth surface makes cleaning easy and leaves no residue after cleaning.

2. Safety
Stopper provides safe drilling without damaging the membrane even when visibility is poor.

3. Repeated Use
Bone chips can be easily removed without getting stuck, so longer life is guaranteed.

4. Cutting Capability
Its excellent bone cutting capability eliminates the need for use of the pointed or ASBE trephine burs.
Mica Kit Contents

ASBE Trephine Bur
Each $200.00

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø3.5/ Ø4.0</td>
<td>2/4/5/6/8 Marking</td>
<td>737-1922</td>
</tr>
<tr>
<td>Ø4.0/ Ø5.0</td>
<td></td>
<td>737-1923</td>
</tr>
<tr>
<td>Ø5.0/ Ø6.0</td>
<td></td>
<td>737-1924</td>
</tr>
</tbody>
</table>

Cobra
Each $250.00

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>737-1936</td>
</tr>
</tbody>
</table>

Point Trephine Bur
Each $140.00

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø3.5/ Ø4.0</td>
<td>2 Marking</td>
<td>737-1941</td>
</tr>
<tr>
<td>Ø4.0/ Ø5.0</td>
<td></td>
<td>737-1942</td>
</tr>
<tr>
<td>Ø5.0/ Ø6.0</td>
<td></td>
<td>737-1943</td>
</tr>
</tbody>
</table>

Express Bur
Each $140.00

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø2.8</td>
<td></td>
<td>737-1925</td>
</tr>
<tr>
<td>Ø3.4</td>
<td></td>
<td>737-1926</td>
</tr>
<tr>
<td>Ø4.2</td>
<td>2/4/5/6/8/10 Marking</td>
<td>737-1927</td>
</tr>
<tr>
<td>Ø4.8</td>
<td></td>
<td>737-1928</td>
</tr>
<tr>
<td>Ø5.8</td>
<td></td>
<td>737-1929</td>
</tr>
</tbody>
</table>

Mushroom
Each $250.00

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø2.8/ Ø3.8</td>
<td>2/4/5/6/8/10 Marking</td>
<td>737-1939</td>
</tr>
<tr>
<td>Ø4.8/ Ø5.8</td>
<td></td>
<td>737-1940</td>
</tr>
</tbody>
</table>

Spreader & Condenser
Each $250.00

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø2.8/Ø3.8</td>
<td>2/4/5/6/8/10 Marking</td>
<td>737-1945</td>
</tr>
</tbody>
</table>

Hand Driver Scale 2:1
Each $68.00

<table>
<thead>
<tr>
<th>Type</th>
<th>Length (mm)</th>
<th>Ref.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Hex</td>
<td>10</td>
<td>737-1492</td>
</tr>
</tbody>
</table>
How to Use Mica Kit for Crestal Approach

Fig 1. Drill with a point trephine bur: 2mm until the laser marking is reached.

Fig 2. Drill with ASBE Trephine bur until 1-2mm of bone is left and break the bone by slightly tilting the bur.
 Remove the collected bone in the trephine by unscrewing the Mini Screw and rotating the shank.

Fig 3. Adjust the position of the stopper to 1mm longer than the remaining bone height and drill with a
 Express bur 0.7-1mm smaller in size than the diameter of the fixture.

Fig 4. Use the mushroom instrument to lift the membrane through the hole made.

Fig 5. Lift membrane using the Cobra instrument.

Fig 6. Graft the harvested bone and alloplastic material using the spreader.

Fig 7. Adjust the stopper of the Condenser and fill the bone material up to desired depth.

Fig 8. Install fixtures into the sites.
Clinical Case 1

Fig 1. Diagnosis with CT.
Fig 2. Before surgery
Fig 3. Flap reflection
Fig 4. ASBE Trephine Bur & Express Bur: expand the hole
Fig 5. Spreader & Condenser: bone graft
Fig 6. Place a fixture
Fig 7. Graft any buccal defect and place a collagen membrane
Fig 8. Primary closure
Fig 9. Postoperative Intra-oral radiograph

Clinical Case 2

Fig 1. Intra-oral radiograph (Before)
Fig 2. Point Trephine Bur: initial drill
Fig 3. ASBE Trephine Bur: make a hole
Fig 4. Express Bur: expand the hole
Fig 5. Spreader & Condenser: bone graft
Fig 6. Place a fixture
Fig 7. Intra-oral radiograph (After)
Fig 8. Postoperative Panoramic View
Perfect for exceptionally difficult cases

The BonEx Kit was developed to include all instruments necessary to do a ridge split technique and is the ideal choice for bone expansion techniques. It consists of a series of expanders made of surgical grade stainless steel which have 5 diameters and can be used sequentially to expand the ridge. A full thickness flap incision is made mid-crestal and a saw is used to cut the bone to the desired depth for implant placement. A pilot drill (lance) is used to select the implant site followed by a 2mm drill to open the crest followed by the bone expander to widen the site to accommodate an implant. The expanders are used at slow speed with 50 ncm torque. After placement of implant you can either do a 1 or 2 stage approach depending on the case.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length (mm)</th>
<th>Marking Line (mm)</th>
<th>Ref. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø2.4</td>
<td>7</td>
<td>7/8.5</td>
<td>737-1539</td>
</tr>
<tr>
<td>Ø2.8</td>
<td>13</td>
<td>7/8.5</td>
<td>737-1540</td>
</tr>
<tr>
<td>Ø3.3</td>
<td>10</td>
<td>10/11.5</td>
<td>TCMBE3313</td>
</tr>
<tr>
<td>Ø3.8</td>
<td>7</td>
<td>7/8.5</td>
<td>TCMBE3813</td>
</tr>
<tr>
<td>Ø4.3</td>
<td>13</td>
<td>10/11.5</td>
<td>TCMBE4313</td>
</tr>
<tr>
<td>Ø4.8</td>
<td>7</td>
<td>7/8.5</td>
<td>737-1541</td>
</tr>
</tbody>
</table>

BonEx kit

Each $795.00

Ref. C
737-1509

Useful in very narrow bone (<2mm)
Use lance drill before expanders to avoid bone breakage during drilling. Can be tapped with a mallet.
Ridge Split Technique

Step-by-step Instructions

Step 1. Indications
Ridge Splitting techniques may be used in any cases presenting a narrow ridge. Single implant or limited space cases, however, offer less room for expansion. If the narrow ridge consists solely of cortical bone with no intervening cancellous bone, it will be difficult to achieve a good ridge split. Caution is also advised in the maxillary anterior as ridge splitting may cause the labial cortical bone to move too labially resulting in severe angulation of the implant.

Step 2. Incision
Incision line is recommended to be at the center of remaining keratinized tissue. A longer horizontal incision is better to permit adequate sawing for ridge splitting. One tooth-size more, mesially and distally.

Step 3. Flap Reflection
Full thickness or full-to-partial thickness flap is recommended. If the ridge crest is less than 2mm, it is advisable to reduce the crestal bone until the width is at least 2mm.

Step 4. Sawing or Ultrasonic
Sawing starts from the center of ridge. The ridge should be cut at a slightly buccal angulation because resorption occurs on buccal bone. If the lingual bone is too thin after sawing, splitting may occur to the lingual side making implant position too far lingual. Thin ridged bone should be cut to the depth of implant length. For example, if the intended implant length is 8.5mm, the incision should be cut to 8.5mm. In most cases, vertical bone cutting is not necessary when you place the AnyRidge implant. Only small offsets at the ends of horizontal bone cutting are enough to guide the direction of ridge expansion, if needed.

Try to maintain lingual bone thicker than buccal to expand thin ridge buccally. Slightly angulated cutting is recommended.

Chiseling (Optional)
If the crest is less than 2mm expand with a chisel first. To avoid bone defects which can be made by drilling on thin ridge, lightly tap with a mallet.

Step 5. Drilling
Drill at the desired position and axis of implant. In ridge expansion technique, lance and 2mm drilling is enough in most cases. It’s only to guide the implant path. If a flat-bottomed implant was planned, drilling should be extended to the diameter recommended by the manufacturer.

Expanding with BonEx kit (Optional)
When wider, slow expansion with BonEx kit is recommended.

The Expanders can be engaged easily with bone by a handpiece (50 Ncm). If it stops before the depth of osteotomy, use a hand wrench and a ratchet extension. Same procedure can be repeated with wider diameter of BonEx Expander.

Step 6. Implant Placement
When the ridge is expanded adequately or has enough flexibility, place the implants. If you use BonEx Expanders, it’s better to leave an Expander during placement of the first implant to keep the ridge expanded. Torque force up to 60-70 Ncm will be fine to place an implant.

Step 7. Bone Graft & Membrane
The remaining bone defects can be filled with any kind of bone graft material. Resorbable membrane is recommendable for better bone fill.

Step 8. Closing flap
One stage or two stage approach can be chosen according to the conditions, but it is recommend ed to finish several cases with successful result before trying one stage surgical approach. Adequate periosteal releasing incision is needed if primary closure is planned.
Meg-Torq Cordless Auto Torque Driver is an innovative tool that allows clinicians to place an implant with controlled torque and an adjustable speed setting. The Meg-Torq is a prosthetic torque driver which provides precise and accurate torque values and allows easy access in the posterior region. Meg-Torq offers unsurpassed reliability and strength by using a combination of the world-class German motor with Swiss manufactured reduction gears. The driver incorporates an easy to read LED display, as well as an ergonomically designed grip.

Reliable & Strong!
Combination of the world's finest motor from Germany with Swiss-made reduction gear.

Each $2,000.00
Ref. C
737-2200
Never before have dentists been able to restore in as little as 4 short weeks.*

You can now load and restore sooner with the AnyRidge® Implant System with its Xpeed® nano bone matrix surface treatment, and the Mega ISQ Implant Stability Meter.

Benefits

- Eliminate stability guesswork forever
- Increased patient satisfaction
- Better initial stability
- Less office visits
- Faster payment
- No “dip” of initial stability

Never before have dentists been able to restore in as little as 4 short weeks.*

You can now load and restore sooner with the AnyRidge® Implant System with its Xpeed® nano bone matrix surface treatment, and the Mega ISQ Implant Stability Meter.

Benefits

- Eliminate stability guesswork forever
- Increased patient satisfaction
- Better initial stability
- Less office visits
- Faster payment
- No “dip” of initial stability

*Result based on clinical research.
The Mega ISQ Implant Stability Meter provides exact implant stability measurements in a completely non-invasive procedure that takes just a few seconds.

Mega ISQ is truly revolutionary, and allows dentists to determine the optimal implant loading time with total confidence. The system is far superior to a tactile assessment, and provides more accurate measurements of implant stability, which helps ensure successful implant procedures. Mega ISQ prevents potential cortical bone and tissue damage often associated with an invasive torque method.

Thanks to the accuracy of Mega ISQ’s measurements, dentists can make a well-informed choice of protocol for each patient. By comparing initial and secondary stability readings, they can detect and act on any unexpected development during osseointegration and healing.

When combined with our AnyRidge Implant System, which features patented innovative knife thread designs and Xpeed S-L-A surface technology, you are assured of exceptional stability, much sooner loading and restoration, and better aesthetic outcomes.

Mega ISQ is covered by a full 12-month warranty from date of purchase.
Unique and convenient to use design

The main component of Mega ISQ is the SmartPeg, which is a small, precision-crafted metal wand that requires minimal space in the patient’s mouth. The SmartPeg automatically resonates in two perpendicular directions, and provides a correct value for the highest as well as the lowest stability of the implant.

The system also features:
- Small and convenient charging station
- AC power connection
- USB connector

A simple 3-step procedure

1. The SmartPeg is attached to the implant. It screws effortlessly into the implant’s internal thread.
2. The hand-held probe stimulates the SmartPeg magnetically without direct contact.
3. An ISQ value is generated and shown on both displays. This reflects the level of stability on the universal ISQ scale – from 1 to 100. The higher the ISQ value, the more stable the implant.
Fiber Optic Implant Motor

- Compact implant motor
- Stable and powerful output
- Foot pedal control
- 20:1 fiber-optic handpiece and motor
- Easy-to-read control panel with vivid LCD
- Auto-calibration function
- E-type motor with ISO standard connection
- Maximum speed at 2,000rpm with 20:1
- Max 70Ncm with 20:1 handpiece
- Actual speed and torque displayed
- Automatic overload protection system
- Nine program memory functions
- Motor and angle are autoclavable

Complete set includes controller and foot pedal, one 40,000 rpm BLDC motor, one 20:1 fiber-optic handpiece, one handpiece stand, inner irrigation clip, tube holders and irrigation pole.

Each $3,000.00

Piezo/Surgical Implant Motor

- An ultrasonic piezo and implant motor in one compact unit
- Stable and powerful output
- Easy to read control panel with vivid LCD
- Fiber-optic motor and handpiece
- Includes contra angle handpieces and 10 piezo tips
- Maximum speed at 2,000rpm with 20:1 handpiece
- Nine program memory functions
- E-type motor with ISO standard connection
- Automatic overload protection system
- Motor and angle are autoclavable

Complete set includes controller and pedal, one piezo handpiece, one motor, one 20:1 contra angle handpiece, inner irrigation clip, two handpiece stands, 10 piezo tips with tip holder, handpiece cage, irrigation tube, tube holders, two poles for irrigation and accessories.

Each $8,000.00
FRINGS® Forceps with springs

High quality performance at a great price.

Ids introduces INOX FRINGS – the “forceps with springs.” FRINGS feature a spring-driven “auto-retractable” design, so you no longer have to use your fingers to open the forceps. They are available in a wide range of the most desirable beak designs, and each is made from quality German stainless steel. FRINGS feature a two-tone titanium finish and ergonomic grip and are protected by a lifetime warranty.

Only
$220.00
Each

541-3925 541-3900 541-3910 541-3905
Upper Incisors Tapered Notched Beak Anteriors Tapered Serrated Beak Lower Molars Cross-Serrated Beak Incisors, Premolars Beveled Serrated Beak

541-3930 541-3915 541-3920 541-3935
Upper Molars Cross-Serrated Beak Lower Molars Tapered Horns Lower Roots Serrated, Cupped Beak Upper Roots Serrated, Cupped Beak

The only forceps in the world with an internal spring!